In vitro stabilization and in vivo solubilization of foreign proteins by the beta subunit of a chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1.

نویسندگان

  • Z Yan
  • S Fujiwara
  • K Kohda
  • M Takagi
  • T Imanaka
چکیده

The gene encoding the beta subunit of a molecular chaperonin from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1 (cpkB) was cloned, sequenced, and expressed in Escherichia coli. The cpkB gene is composed of 1,641 nucleotides, encoding a protein (546 amino acids) with a molecular mass of 59,140 Da. The enhancing effect of CpkB on enzyme stability was examined by using Saccharomyces cerevisiae alcohol dehydrogenase (ADH). Purified recombinant CpkB prevents thermal denaturation and enhances thermostability of ADH. CpkB requires ATP for its chaperonin function at a low CpkB concentration; however, CpkB functions without ATP when present in excess. In vivo chaperonin function for the solubilization of insoluble proteins was also studied by coexpressing CpkB and CobQ (cobryic acid synthase), indicating that CpkB is useful for solubilizing the insoluble proteins in vivo. These results suggest that the beta subunit plays a major role in chaperonin activity and is functional without the alpha subunit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and characterization of a second subunit of molecular chaperonin from Pyrococcus kodakaraensis KOD1: analysis of an ATPase-deficient mutant enzyme.

The cpkA gene encoding a second (alpha) subunit of archaeal chaperonin from Pyrococcus kodakaraensis KOD1 was cloned, sequenced, and expressed in Escherichia coli. Recombinant CpkA was studied for chaperonin functions in comparison with CpkB (beta subunit). The effect on decreasing the insoluble form of proteins was examined by coexpressing CpkA or CpkB with CobQ (cobyric acid synthase from P. ...

متن کامل

Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1.

A hyperthermophilic archaeal strain, KOD1, isolated from a solfatara on Kodakara Island, Japan, has previously been reported as Pyrococcus sp. KOD1. However, a detailed phylogenetic tree, made possible by the recent accumulation of 16S rRNA sequences of various species in the order Thermococcales, indicated that strain KOD1 is a member of the genus Thermococcus. We performed DNA-DNA hybridizati...

متن کامل

Characterization of recombinant glutamine synthetase from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1.

The glnA gene encoding glutamine synthetase was cloned from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1, and its nucleotide sequence was determined. The glnA gene was expressed in Escherichia coli ME8459 (glnA mutant strain), and the protein was purified to homogeneity and shown to be functional in a dodecameric from (637,000 Da), exhibiting both transferase and synthetase activit...

متن کامل

Stress Genes: Role in Physiological Ecology

Hydrothermal environments contain steep thermal gradients and variable temperature conditions. Hyperthermophilic microorganisms, those which grow at temperatures exceeding 90°C, are common in these environments and have numerous means for tolerating hyperthermal stress. All hyperthermophiles examined produce a heteromeric chaperonin complex which is the primary protein produced during heat shoc...

متن کامل

Stabilization of Taq DNA polymerase at high temperature by protein folding pathways from a hyperthermophilic archaeon, Pyrococcus furiosus.

Pyrococcus furiosus, a hyperthermophilic archaeon growing optimally at 100 degrees C, encodes three protein chaperones, a small heat shock protein (sHsp), a prefoldin (Pfd), and a chaperonin (Cpn). In this study, we report that the passive chaperones sHsp and Pfd from P. furiosus can boost the protein refolding activity of the ATP-dependent Cpn from the same hyperthermophile. The thermo-stabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 63 2  شماره 

صفحات  -

تاریخ انتشار 1997